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Abstract

The accelerating rate at which DNA sequence data are now generated by high-

throughput sequencing instruments provides both opportunities and challenges for

population genetic and ecological investigations of animals and plants. We show

here how the common practice of calling genotypes from a single SNP per

sequenced region ignores substantial additional information in the phased short-read

sequences that are provided by these sequencing instruments. We target sequenced

regions with multiple SNPs in kelp rockfish (Sebastes atrovirens) to determine “micro-

haplotypes” and then call these microhaplotypes as alleles at each locus. We then

demonstrate how these multi-allelic marker data from such loci dramatically increase

power for relationship inference. The microhaplotype approach decreases false-

positive rates by several orders of magnitude, relative to calling bi-allelic SNPs, for

two challenging analytical procedures, full-sibling and single parent–offspring pair

identification. We also show how the identification of half-sibling pairs requires so

much data that physical linkage becomes a consideration, and that most published

studies that attempt to do so are dramatically underpowered. The advent of phased

short-read DNA sequence data, in conjunction with emerging analytical tools for

their analysis, promises to improve efficiency by reducing the number of loci neces-

sary for a particular level of statistical confidence, thereby lowering the cost of data

collection and reducing the degree of physical linkage amongst markers used for

relationship estimation. Such advances will facilitate collaborative research and man-

agement for migratory and other widespread species.
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1 | INTRODUCTION

The proliferation of individual-based population genetic methods in

ecology and evolution has led to a commensurate demand for

increasing analytical power. The identification of first-order rela-

tives, including parents and offspring, or full-siblings, is now com-

monplace in the study of animals and plants, with genotypes

serving both to identify relationships and as elements of larger

data aggregations used in the estimation of population genetic

parameter values. As the demands of such analyses grow, and

extend to more difficult problems of relationship estimation, mak-

ing optimal use of the data from high-throughput DNA sequencers

is critical to achieving strong inference at low cost and with wide

availability.
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High-throughput sequencing technologies have dramatically

increased the rate of data generation, making collection of data for

genetic analysis cheaper and less time-consuming. Methodological

advances in both generating and analysing these high-throughput

sequencing data have made it more feasible to address difficult bio-

logical questions (Andrews, Good, Miller, Luikart, & Hohenlohe,

2016; Kidd et al., 2014; McCormack, Hird, Zellmer, Carstens, &

Brumfield, 2013; McKinney, Seeb, & Seeb, 2017). One such area of

investigation that has benefited from these technological develop-

ments is the identification of family relationships and pedigree

reconstruction. Since the inception of genetically informed relation-

ship inference, a half-century ago, researchers have applied a num-

ber of different molecular markers to the problem of pedigree

analysis, including allozymes, microsatellites and most recently sin-

gle-nucleotide polymorphisms (SNPs). Key considerations for the util-

ity of a molecular marker include (i) variability, (ii) ease of laboratory

data generation and (iii) cost per individual.

Initial studies using single-locus protein-based markers, such as

allozymes, had limited utility in species with low variability, with the

added issue that data from these markers may not be consistent

with neutral expectations (Parker, Snow, Schug, Booton, & Fuerst,

1998). Highly polymorphic microsatellite loci quickly became the

molecular marker of choice for ecological studies with the wide-

spread adoption of PCR in the early 1990s (Morin, Luikart, & Wayne,

2004). These DNA-based markers can have large numbers of alleles

and, thus, high information content, and became the dominant

marker for exclusion-based pedigree analysis (Parker et al., 1998).

However, microsatellites also have many shortcomings, including

substantial homoplasy and high genotyping error rates (Garza & Frei-

mer, 1996; Hoffman & Amos, 2005; Morin et al., 2004; Pemberton,

2008). In addition, measurement error between genotyping platforms

and laboratories makes reproducibility challenging (Pemberton, 2008;

Seeb et al., 2007) and identifying sufficiently variable microsatellite

loci, particularly in species with low diversity, has historically been

difficult (Parker et al., 1998; Pastor, Garza, Allen, Amos, & Aguilar,

2004).

In contrast, single-nucleotide polymorphisms (SNPs) are the most

abundant form of variation in the genome of most species (Brum-

field, Beerli, Nickerson, & Edwards, 2003; Morin et al., 2004) and

their characterization has become straightforward with the advent of

high-throughput DNA sequencing. In addition, SNP genotypes can

be called with much less human interaction, generally have low error

rates, and facilitate data sharing and collaboration (Anderson &

Garza, 2006; Clemento, Abad�ıa-Cardoso, Starks, & Garza, 2011;

Seeb, Pascal, Ramakrishnan, & Seeb, 2009). Despite the advantages

of SNPs, the vast majority are bi-allelic and do not provide the same

per-locus power as microsatellites. As such, many more SNPs than

microsatellite loci are generally required to provide similar power for

population genetic and molecular ecological studies (e.g., Hauser,

Baird, Hilborn, Seeb, & Seeb, 2011; Kaiser et al., 2017; Narum et al.,

2008; Weinman, Solomon, & Rubenstein, 2015).

The huge amounts of data generated by high-throughput DNA

sequencers are transforming population biology, where they have

helped to elucidate species relationships, genetic connectivity and

ecological processes (Andrews et al., 2016; Ekblom & Galindo, 2011;

McCormack et al., 2013; Narum, Buerkle, Davey, Miller, & Hohen-

lohe, 2013). However, unlike traditional Sanger sequencing, precise

control over instrument output is challenging, so most initial applica-

tions have involved the collection of large amounts of data from one

or a small number of individuals, with sequencing reads either ran-

domly sampling the genome or a reduced fraction of it. However,

many questions in population biology do not require “whole gen-

ome” sequences or even the thousands of SNPs provided by most

reduced representation methods, such as RADseq. As such, much

effort has been expended to direct sequencing power to small num-

bers of genomic targets, allowing more individuals to be studied in a

single instrument run.

Here, we describe how data from multiple SNPs that occur

within the same small region, and which can be genotyped jointly

from single reads from high-throughput DNA sequencers, can be

used to much more efficiently derive accurate relationship inference.

This method uses the phase information inherent in these short-read

DNA sequences to derive multi-allelic “microhaplotype” markers

from multiple, proximate SNPs (Kidd et al., 2013, 2014). We use

data from a nearshore marine fish and simulation analysis to show

how utilizing the additional information that comes from considering

all variation in these short sequences provides large increases in

inferential power for identifying kin relationships from the same

amount of DNA sequence data.

As sequencing instruments are limited in the total number of

sequencing reads produced in a single run, finding the optimal trade-

off between the number of samples analysed and the number of

genomic targets sequenced becomes critically important for popula-

tion biological studies. For questions that are extremely data-inten-

sive, or are focused specifically on genomic issues, whole genome

sequencing or reduced representation methods may be necessary

and appropriate, but they will be prohibitive when it is also neces-

sary to analyse a large number of individuals. For projects that

require analysis of thousands of samples, it is important to utilize

data collection methods that make the most efficient use of

sequencing technology, so that a modest number of loci, or genomic

regions, are targeted, with these loci chosen to possess high infor-

mation content. Multi-allelic microhaplotype markers meet this crite-

rion and allow genotyping of many more individuals in a sequencing

run, as many fewer such loci are necessary to achieve the same

power than when just calling SNPs from such DNA sequence data.

Kidd et al. (2013, 2014) provided a proof of concept that micro-

haplotype markers exist in the human genome and are useful for

forensic and pedigree-type questions. Gattepaille and Jakobsson

(2012) showed analytically and empirically that such microhaplotypes

increase the power for assignment of individuals to a population of

origin, a result that was extended by McKinney et al. (2017) for nat-

ural populations of salmon.

We expand on this concept by describing a set of microhaplo-

type loci in an organism without a reference genome, kelp rockfish

(Sebastes atrovirens), a Pacific Ocean nearshore species of ecological
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and cultural importance. We then show how targeting gene regions

with abundant natural variation allows development of a 96 locus

microhaplotype panel with sufficient power for difficult relationship

inference problems, including accurate identification of single parent–

offspring and full-sibling pairs. We show how these microhaplotypes

have significantly higher heterozygosity than 96 SNPs from the same

data set and provide much more power for pedigree inference. While

hundreds of SNP loci would be necessary to achieve similar accuracy,

the panel of 96 microhaplotypes provides sufficiently low error rates

for even the largest studies. We highlight how microhaplotypes will

substantially increase the power for population genetic and ecological

applications, and will be particularly useful for studies that require

genetic markers that are easily genotyped and portable amongst labo-

ratories that use benchtop sequencers to generate data. Microhaplo-

types will substantially increase the efficiency of genotyping and

provide greater analytical power, lowering costs and potentially

enhancing collaboration and coordination in the study, management

and conservation of animal and plant species.

2 | METHODS

2.1 | Samples

Tissue samples were obtained from field collections of rockfishes

sampled at sites throughout Carmel and Monterey Bays, CA, USA.

Adult kelp rockfish were sampled by hook-and-line capture followed

by removal of a small sample from the caudal fin or by nonlethal,

underwater pole-spear biopsy, and tissue samples were subsequently

dried on blotting paper. Genomic DNA was extracted from the dried

tissue of 144 unrelated adult fish using DNeasy 96 Blood and Tissue

kits on a BioRobot 3000 (Qiagen, Inc.) with an elution volume of

200 ll. DNA extracts were then stored at 4°C until analysis.

2.2 | SNP discovery and amplicon design

To identify sufficient nucleotide variation in kelp rockfish for the

design of microhaplotype markers, we used reduced-representation

genome sequencing to generate data from which we could identify

variants and design small amplicons (100–130 bp) containing multiple

SNPs. We performed double-digest restriction site-associated DNA

sequencing (ddRADseq; Peterson, Weber, Kay, Fisher, & Hoekstra,

2012) on 20 adult kelp rockfish. DNA concentration was normalized

across individuals, and samples were digested with two restriction

enzymes, Sph1 and EcoR1, with all other details of the library prepa-

ration as in Peterson et al. (2012). We selected 350-bp genomic

fragments using a Pippin Prep (Sage Science) and sequenced 12 sam-

ples in one run and eight samples in a second run on a MiSeq (Illu-

mina, Inc.) using 600-cycle paired-end sequencing kits.

Additionally, several loci were identified from publicly available

expressed sequence tags (ESTs) in an approach analogous to that

used to discover and validate SNPs in other fish species (e.g.,

Abad�ıa-Cardoso, Clemento, & Garza, 2011; Clemento et al., 2011).

We selected 192 ESTs for screening by PCR to determine those that

effectively amplified. We then generated Sanger sequence data for

each locus from two kelp rockfish individuals to identify variants.

Initial analysis of the ddRAD data was with STACKS v1.34

(Catchen, 2013). Raw reads were demultiplexed using the pro-

cess_radtags module which assigns specific reads to individuals based

on unique barcode sequences. Demultiplexed reads were then

passed to Stacks for assembly, requiring a minimum stack depth of 4

(m), the distance allowed between stacks of 2 (M) and the distance

allowed between catalog loci of 2 (n). Stacks identified 17,991 geno-

mic regions in the 20 kelp rockfish samples, where each region

should correspond to a unique DNA sequence. We then filtered the

Stacks-assembled genomic regions according to two criteria: (i) the

presence of at least one SNP and (ii) genotyping data present in at

least eight samples. This filtering reduced the data set to 3,517 geno-

mic regions. To ensure that amplicon design targeted unique genomic

regions (e.g., no repetitive elements), we used BLAT—the BLAST-Like

Alignment Tool (Kent, 2002)—to perform pairwise comparisons of

each genomic region with every other region and removed 1,184

likely duplicates (those with greater than 95% similarity).

We then filtered the remaining sequences for (i) between two

and six SNPs within 300 bp, with at least two of them within 100–

130 bases, (ii) presence of multiple haplotypes observed across the

20 kelp rockfish sequenced and (iii) no obvious deviations from

Hardy–Weinberg equilibrium (HWE). From the remaining Stacks loci,

we randomly selected 192 small genomic regions (<200 bp) for

amplicon design. We targeted regions <200 bp because such short

regions appear to amplify more uniformly in multiplex reactions than

larger DNA fragments (D. S. Baetscher & J. C. Garza, unpublished

data). We then successfully designed PCR primers for 177 of these

candidate microhaplotype markers using PRIMER3 software in GENEIOUS

v7.1.7 (Kearse et al., 2012) and added 15 gene regions from the EST

sequencing data.

2.3 | Amplicon sequencing

We used Genotyping-in-Thousands by Sequencing (GT-seq; Camp-

bell, Harmon, & Narum, 2015) to generate sequence data for haplo-

type calling. Briefly, we used an initial multiplex PCR to select

amplicon sequences from genomic DNA in each sample. We per-

formed multiplex PCR with primers for 96 amplicons targeting DNA

from 96 adult kelp rockfish in each reaction. The locus-specific pri-

mers were designed to include priming sites for the sequencing reac-

tions, which allows the instrument to recognize start locations for

sequencing. A second PCR added individual-specific indexes (DNA

barcodes) that allow sequences to be identified to individual samples

during bioinformatic analysis. After both PCRs, DNA concentration

was normalized across samples to minimize variation in number of

sequencing reads per individual. Post-normalization, indexed samples

were combined and the sequencing library was quantified by Qubit

Fluorometer (Thermo Fisher Scientific) and then by qPCR with the

Illumina Library Quantification Kit (Kapa Biosystems). Finally, we

sequenced the library on a MiSeq instrument using a paired-end

approach and a 150-cycle sequencing kit. All other details of the
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thermal cycling and library preparation are as in Campbell et al.

(2015).

We tested 192 loci in two sets of 96 amplicons per sequencing

run, with 96 DNA samples each. We replicated the first sequencing

run with 48 of the same samples to evaluate consistency across

sequencing runs and substituted half of the samples with 48 differ-

ent individuals from the same collection to check for consistency of

loci across samples. For the second set of 96 amplicons, we dropped

three of the loci in the replicate run due to high read depth. These

four sequencing runs provided variation information for a total of

144 individuals and each run produced 23.8–27.6 million reads that

passed filter.

2.4 | Bioinformatic processing

Sequencing reads for each sample were grouped by index with the

MISEQ Analysis Software (Illumina), and paired-end reads were com-

bined using the Fast Length Adjustment of SHort reads (FLASH;

Mago�c & Salzberg, 2011). Only successfully paired reads were

retained and then mapped to a reference file of consensus

sequences using the Burrows-Wheeler Aligner (BWA-MEM; Li & Dur-

bin, 2009). Mapped reads were converted from Sequence Align-

ment/Map (SAM) files to Binary Alignment/Map (BAM) files with

SAMtools (Li et al., 2009), and then, FreeBayes (Garrison & Marth,

2012) was used to call variants with settings that did not include an

input set of variants, multinucleotide polymorphisms or complex vari-

ation (composites of other types of variation). FreeBayes outputs a

variant call format (VCF) file with information about the position of

each SNP in each locus from the 144 rockfish evaluated.

Existing software was unable to reliably assemble haplotypes

from specified variants, primarily due to a large number of reads per

locus. Accordingly, we developed MICROHAPLOT, a novel program

implemented as an R (R Core Development Team 2016) package and

associated Shiny app (http://shiny.rstudio.com/), that easily imports

amplicon data containing microhaplotypes and allows filtering based

on various criteria before outputting individual haplotypes and their

read depths in each individual (Ng et al., https://doi.org/10.5281/ze

nodo.820110). MICROHAPLOT uses a reference VCF file to specify the

variant sites in each target region that are to be assembled into

microhaplotypes, and then, it extracts those sites from SAM files of

reads (one for each individual) aligned to the target regions. MICRO-

HAPLOT properly accounts for indel variation within the target regions

and uses the co-occurrence of variants on single reads to provide

phase information to call microhaplotypes.

We filtered data to retain only those haplotypes with at least 20

reads at a locus within an individual. However, as some sequencing

protocols can produce very high read depths at loci in some individ-

uals, it is possible to find spurious microhaplotypes with read depth

greater than 20, due to sequencing errors and “index switching”

(Sinha et al., 2017). To filter these out, we also removed haplotypes

with a read depth ratio of less than 0.2; that is, those haplotypes at

a locus with less than 0.2 of the read depth of the haplotype with

the highest read depth within an individual. For example, if an

individual has read depths 1,000, 800, 33 and 10 at a locus for hap-

lotypes AGT, AAT, GGC and AGC, respectively, the AGC haplotype

would be removed because it had fewer than 20 reads, and the

GGC one because it has a read depth ratio of 33/1,000 = 0.033

(<0.2). After this filtering, genotypes were called from the remaining

haplotypes, and if two or more haplotypes remained, the individual

was called as a heterozygote of the two haplotypes with highest

read depth, and if only one haplotype remained, then the individual

was called as a homozygote. Any locus that generated called geno-

types for fewer than 75% of the samples was then excluded. Like-

wise, loci with obvious deviations from HWE and those that

produced a third or fourth unfiltered haplotype with read depth >50

in more than 5% of individuals were removed. Finally, we removed

monomorphic loci—those with only one haplotype present in the

144 test samples. Individual haplotypes from the 165 remaining loci

were then exported from MICROHAPLOT for downstream analyses.

To determine the utility of microhaplotypes for pedigree analyses

and compare their performance with bi-allelic SNPs, we generated

five data sets to assess power in both marker types across all 165

genomic regions and with sets of 96 genomic regions. These data

sets are as follows: microhaplotypes in all 165 genomic regions

(m165); the single SNP with the highest heterozygosity in each of

the 165 genomic regions (s165); the 96 microhaplotypes with the

highest heterozygosities (m96); 96 SNPs with the highest heterozy-

gosity, with no more than one per genomic region (s96_top); and

finally, the single SNP with the highest heterozygosity within the

genomic regions containing the best 96 microhaplotypes (s96_m).

We then used Monte Carlo simulation to evaluate the power to

accurately identify parent–offspring pairs, and full- and half-sibling

pairs using these five data sets.

The Monte Carlo simulations were made using CKMRSIM (Ander-

son, https://doi.org/10.5281/zenodo.820162), an R (R Core Team,

2016) package that implements a variant of the importance-sampling

algorithm of Anderson and Garza (2006) tailored to pairwise relation-

ship inference and multi-allelic markers. Briefly, in CKMRSIM, the geno-

types of related pairs of individuals are simulated from the estimated

allele frequencies and the probabilities of those genotype pairs are

calculated to compute a log-likelihood ratio of the true relationship

vs. the hypothesis of no relationship. Similarly, genotypes of unre-

lated pairs are also simulated and their log-likelihood ratios com-

puted. The simulated distributions of these log-likelihoods are used

to compute the false-negative rates (the per-pair rate at which pairs

that truly have the specified relationship are deemed unrelated) and

the false-positive rates (the per-pair rate at which unrelated individu-

als are incorrectly inferred to be related with the specified relation-

ship) to be expected when any particular log-likelihood ratio

threshold is used as a criterion for classifying a pair into a given rela-

tionship, vs. unrelated. The importance-sampling algorithm permits

accurate estimation of very small per-pair false-positive rates

(<10�10) which cannot be accurately estimated using conventional

Monte Carlo.

Simulations and likelihood calculations in CKMRSIM were made using

a genotyping error model that includes allelic dropout and sequencing
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errors. We set the rates of the errors so that, with both microhaplo-

types and SNPs, the per-locus rate of calling an incorrect genotype

was between 0.005 and 0.01. False-positive rates for parent–

offspring and full- and half-sibling relationships were calculated for a

range of false-negative rates from 0.01 to 0.3. In addition, to further

evaluate the power to identify half-sibling pairs, we replicated two of

the three 96-locus data sets (m96, s96_top) providing data sets that

included 1, 2, 4, 8 and 16 times as many loci (i.e., providing allele fre-

quencies for between 96 and 1,536 markers) and assessed power at a

single FNR value of 0.01. Finally, as physical linkage between markers

(even if they are not in linkage disequilibrium) results in a reduction in

power for inference of siblings (relative to using entirely unlinked

markers), and because close physical linkage becomes more likely with

a larger number of markers, we evaluated the effects of physical link-

age on the power of the replicated data sets for half-sibling inference.

This was carried out by assuming a “typical vertebrate genome” (25

chromosomes of between 1 and 2 Morgans in recombinational length)

into which loci were randomly positioned. Simulations in CKMRSIM were

then performed assuming physical linkage using the package’s ability

to call the software MENDEL (Lange et al., 2013).

3 | RESULTS

Three of the 192 loci were removed because they collectively

accounted for nearly 73% of reads in one of the sequencing runs.

After manually curating the remaining 189 loci in MICROHAPLOT

using the criteria described above, 165 loci remained for analysis.

These loci contained 825 unique haplotypes across 144 kelp rock-

fish, with between one and 11 SNPs per locus (mean 3.58) and

two and 13 haplotypes per locus (Figure 1). For the 96 loci

sequenced in replicate runs, the ordinal rank of loci by number of

reads from the same 48 individuals was strongly correlated (Spear-

man’s coefficient = 0.99), demonstrating the consistency of results

for individual loci across runs. In addition, read depths were con-

sistently high (mean 1,483 reads per genotype) and genotype call

rates were consistently high, ranging between 92% and 96% of all

locus/individual combinations (at read depth of 20) in the four

runs. Most of the missing data was concentrated in several indi-

viduals that appeared to have lower quality DNA extractions.

Observed heterozygosities of the 165 microhaplotype loci

(m165) were substantially higher than those of the most variable sin-

gle SNPs in each of the 165 loci (s165) (Figure 2). Mean heterozy-

gosity of the microhaplotype loci was 0.41, vs. 0.22 when just the

SNP with the highest minor allele frequency (MAF) in each locus

was called. The 96 most informative microhaplotype loci (m96) had a

mean of 5.64 alleles (haplotypes) per locus and mean heterozygosity

of 0.54 (range = 0.37–0.82), whereas for the 96 most variable SNPs

(s96_top) mean heterozygosity was 0.33 (range = 0.17–0.49). Mean

heterozygosity of the most variable SNPs in each of the 96 best

microhaplotype loci (s96_m) was very similar to that of the 96 best

SNP loci (s96_top) and, as such, that set of polymorphisms was not

evaluated further.

False-positive rates (FPR) for identifying parent–offspring pairs

and full-sibling pairs, estimated using simulations, were much smaller

with microhaplotypes than with SNPs (Figure 3). The FPR is inver-

sely related to the false-negative rate (FNR), so that increasing FNR

decreases FPR. At FNR = 0.01, matching single parents with off-

spring using 96 microhaplotype loci (i.e., m96 data set) resulted in an

FPR of 8.43 9 10�11, whereas with the top 96 SNPs (s96_top), it

was 2 9 10�4 (Figure 3a). For identifying full-sibling pairs, also at

FNR = 0.01, the FPR for m96 was 9.62 9 10�8, and with s96_top,

it was 2.54 9 10�3 (Figure 3b). In contrast, for identifying half-

sibling pairs, considerably more power than provided by the set of

either 96 microhaplotype loci or 96 SNPs is needed to achieve

acceptable false-positive rates (Figure 4). With 96 microhaplotype

loci, the FPR, again at FNR = 0.01, is 0.065, which means that more

than one of twenty comparisons of nonsiblings would result in a

false-positive identification. For the 96 SNPs, FPR = 0.44 at the

same FNR of 0.01, indicating an almost complete lack of power to

discriminate half-siblings from unrelated individuals.

Even when the SNP data set is expanded by a factor of four (for

a total of 384 loci), the half-sibling FPR for SNPs decreases to only

4.6 9 10�3 (Figure 4). In contrast, when the microhaplotype data set

is expanded by a factor of four, the resulting FPR at a FNR of 0.01

is 6.8 9 10�9, which would be adequate for all but very large stud-

ies. Moreover, when taking into account physical linkage, which is

unavoidable when the number of markers exceeds the number of

chromosome arms and reduces the independence between markers

for sibling inference, the apparent increase in power when adding

markers is reduced, relative to unlinked markers, with the reduction

increasing with the number of markers (Figure 4). Although the

reduction is not extreme, to achieve an FPR of 1 9 10�9 at

F IGURE 1 Distribution of microhaplotypes across 165 loci in 144
kelp rockfish samples. The number of haplotypes per locus ranged
from two to 13
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FNR = 0.01 in half-sibling analysis, about 50 more microhaplotypes

are necessary than would be predicted without taking into account a

typical pattern of linkage. In contrast, approximately 350 additional

SNPs would be necessary to achieve such additional power in the

face of physical linkage. Note that this analysis is intended to evalu-

ate power for larger data sets with equivalent variation to the empir-

ical data presented here, but will provide conservative estimates of

the number of loci necessary if such larger data sets had lower mean

heterozygosity.

4 | DISCUSSION

As population genetic and molecular ecology research transitions to

use of data from high-throughput DNA sequencers, it is critical to

determine which data collection methods provide the optimal bal-

ance between the necessary amount of data per individual and the

maximum number of individuals that can be accommodated in each

instrument run. Many population genetic questions, including eluci-

dation of patterns of population structure and most relationship

F IGURE 2 Heterozygosity of 165
microhaplotypes comprised of all SNPs in a
locus compared to the single SNP with the
highest minor allele frequency in that same
locus. Bi-allelic SNPs have a maximum
heterozygosity of 0.5

F IGURE 3 Simulated false-positive
rates for matching (a) single parents with
offspring and for (b) full-siblings at a given
false-negative rate using the four sets of
markers: 165 microhaplotypes (m165), 165
SNPs (s165), 96 microhaps (m96) and 96
SNPs with the highest heterozygosity
(s96_top)
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inference analyses, require many fewer genetic markers than pro-

vided by popular reduced-representation genome sequencing

approaches (e.g., RADseq, ddRADseq). In addition, such approaches

usually yield different, albeit overlapping, sets of genomic regions in

different sequencing runs for different investigators, complicating

collaboration and replication. In contrast, targeted methods, such as

amplicon-sequencing and capture array approaches, offer the ability

to optimize the trade-off between the number of samples and the

amount of data acquired per sample, yielding data sets that are pre-

dictable and easily replicated.

Here, we identified short genomic regions containing multiple

SNPs segregating as haplotypes and designed amplicons that can

be easily multiplexed and sequenced using such targeted protocols.

These microhaplotypes contain more information than single bi-alle-

lic SNPs and offer the benefit of providing much more inferential

power per locus than the SNP data typically derived from high-

throughput DNA sequencers. The microhaplotype information is

provided directly in such data, without the need for statistical

phasing (Stephens & Donnelly, 2003), because the sequences are

replicated from single molecules and therefore preserve phase

information for variants located in the same sequencing read. This

phase information allows much higher inferential and statistical

power for examining population biology questions, including data-

intensive inference of pedigree relationships, by calling multi-allelic

microhaplotypes from the same sequence data typically used to call

bi-allelic SNPs.

The value of utilizing incomplete linkage disequilibrium (LD)

between proximate SNPs (Pakstis, Fang, Furtado, Kidd, & Kidd,

2012) and leveraging the phase information that comes from high-

throughput DNA sequencing instruments (Kidd et al., 2013, 2014)

has been previously recognized. Kidd et al. (2013) demonstrated that

areas of the human genome where two or more SNPs occur within

~200 bp are common and that the SNPs were generally not in

complete LD, with recombination, genetic drift and/or selection cre-

ating population ancestry-informative alleles (Kidd et al., 2014).

Here, we extend the documentation of microhaplotype utility, by

showing how selecting genomic regions with multiple SNPs in close

proximity for use with targeted sequencing approaches, including the

amplicon-sequencing approach we employ, allows much more power

for relationship inference to be derived from the same amount of

high-throughput sequencing data. In the example rockfish data set,

simulations demonstrated that 96 microhaplotype loci generate

false-positive rates for single parent–offspring identification on the

order of 10�11, at FNR = 0.01, whereas the most informative single

SNPs from each of 96 loci provided false-positive rates of 10�4 (Fig-

ure 3a). Similarly, power for the more challenging problem of full-sib-

ling identification was substantially higher with the 96

microhaplotype loci (FPR on the order of 10�8) than with the 96

best SNPs (FPR on the order of 10�3).

The much higher mean heterozygosity of the microhaplotype loci

compared with the SNPs is indicative of their greater information

content for population genetic analyses, particularly relationship

inference. Indeed, the simulations demonstrated that the microhaplo-

type markers substantially outperformed the corresponding SNP loci

in all cases (Figure 3). While 96 SNP loci with modest mean MAF

have been shown to be sufficient to identify parent pair–offspring

trios (Abad�ıa-Cardoso, Anderson, Pearse, & Garza, 2013; Anderson &

Garza, 2006), single parent–offspring pair identification is consider-

ably more challenging—there is greater separation between the like-

lihood ratio distributions of parent pair–offspring trios and unrelated

trios than there is between single parent–offspring pairs and unre-

lated pairs. While the false-positive rates estimated for the 96 SNPs

might seem low, even exceedingly small rates can lead to a large

number of false-positive errors, because these are per-pair rates. The

expected number of false-positive errors is found by multiplying the

FPR by the total number of pairwise comparisons necessary. Many

F IGURE 4 Simulated false-positive
rates for identifying half-siblings with a
given number of microhaplotype and SNP
markers at a false-negative rate of 0.1.
Data are simulated both including and
excluding physical linkage
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studies, particularly in natural populations, involve very large num-

bers of pairwise comparisons. For example, with samples from 5,000

adults and 5,000 juveniles, a single parent–offspring identification

analysis involves a total of 2.5 9 107 pairwise comparisons. Thus,

even false-positive rates of 10�6 could result in dozens of incorrectly

inferred pedigree relationships. With the best 96 microhaplotype loci

from kelp rockfish, the false-positive rate for single parent–offspring

pair analysis is 8.43 9 10�11 at a false-negative rate of 1%. This

means that even with 100,000 parents and 100,000 offspring geno-

typed (for a total of 1010 pairwise comparisons), less than one falsely

inferred parent–offspring relationship between unrelated individuals

would be expected. In contrast, with this same sampling scheme,

and a dataset with the 96 best SNPs (FPR = 2 9 10�4 at FNR of

1%), we would expect thousands of false positives (Figure 3a).

Similarly, Monte Carlo evaluation of the false-positive rate for

full-siblings demonstrates the substantial increase in power

obtained using microhaplotypes rather than SNPs. For example,

searching for full-siblings from amongst a data set with 5,000

juveniles would involve nearly 1.25 9 107 pairwise comparisons.

False-positive rates in a study with this number of pairwise com-

parisons between potential full-sibling pairs and using 96 micro-

haplotype loci (FPR = 9.62 9 10�8 at FNR of 1%) are expected to

produce less than one false positive. In contrast, with the best 96

SNPs (FPR = 2.54 9 10�3 at FNR of 1%) such an analysis would

potentially result in thousands of false positives, highlighting how

most published studies that attempt to identify pairs of siblings,

particularly half-siblings, have been underpowered. While 96 SNPs

can be sufficient for accurately identifying large full-sibling groups

in a joint analysis (e.g., with COLONY [Wang, 2004]), if only a

small number of sibling pairs are present in the sample, the joint

analysis offers no increase in power over a pairwise approach. This

situation occurs frequently when sampling large populations for

the purpose of close-kin mark–recapture (Bravington, Skaug, &

Anderson, 2016).

Another analytical application that will benefit from increased

power with microhaplotypes is genetic stock identification (GSI) or

individual assignment. The microhaplotype panel described here is

for a species without significant population structure (Gilbert-Hor-

vath, Larson, & Garza, 2006), but utilizing the phased data from

short-read sequences for haplotype determination has recently been

shown to increase power for GSI as well, although by a much smaller

margin than for relationship inference applications (McKinney et al.,

2017). However, with targeted ascertainment, it is feasible to over-

represent loci with haplotypes that have highly diagnostic frequen-

cies across different populations and with high power for identifying

particular ancestry (Kidd et al., 2014; Pakstis et al., 2012). In addi-

tion, Willis, Hollenbeck, Puritz, Gold, and Portnoy (2017) have shown

how microhaplotypes can be used to identify paralogs and genotyp-

ing error in RADseq data sets. The use of microhaplotypes might

also increase analytical power for other population genetic applica-

tions, such as estimation of effective population size or phylogeogra-

phy, but such applications would require appropriately ascertained

loci, and not ones chosen, as here, to include as many SNPs as

possible in 100- to 150-bp fragments. As such, both initial ascertain-

ment and microhaplotype locus screening and validation would need

to involve appropriate discovery strategies and samples for the type

of inference that will be pursued.

We used 96 loci to compare the power of microhaplotypes

with SNPs, primarily because of the standard 96-well microplate

configuration, and the associated standardization of laboratory

equipment, including many traditional genotyping and sequencing

platforms, around this 96-well microplate configuration. However,

there is no inherent constraint on the number of microhaplotype

loci that can be included in a particular study. While compiling data

from microhaplotypes can be implemented with any type of short-

read sequencing protocol that preserves phase information, includ-

ing RAD approaches (Willis et al., 2017) and capture arrays, one

benefit of the targeted sequencing approaches, such as the GT-seq

amplicon protocol used here, is the ability to include any number

of loci (Campbell et al., 2015), so that panels of microhaplotype loci

can be tailored to the study-specific requirements for analytical

power in relationship inference (Anderson & Garza, 2006). In addi-

tion, the GT-seq protocol that we employ here interrogates frag-

ments of 100–150 bp in length that contain multiple variable sites.

In principal, longer fragments could contain more variable sites on

average and provide more power per locus than the relatively short

fragments we analyse. We note, however, that longer fragments

involve trade-offs of sequencing cost and instrument run time, and

that the highly multiplexed PCR involved in our approach is less

reliable with longer fragments (D. S. Baetscher & J. C. Garza,

unpublished data).

Similarly, although we used FreeBayes to call SNPs and create

the VCF files for input to MICROHAPLOT, in which haplotypic geno-

types were then called, there are several alternative analytical

pathways, including FreeBayes and Stacks, that can be used to call

SNPs in a haplotype-aware manner that preserves phase informa-

tion, and then call genotypes from the resulting haplotype data. A

full treatment of the advantages and drawbacks of different analy-

sis software is beyond the scope of the current study, but we

note that the filtering and data handling capabilities of these other

analytical approaches are not always well suited to the high read

depths and other aspects of amplicon-sequencing data sets such

as the one we present.

Our criteria for calling genotypes after filtering of haplotypes

using read depth and read depth ratio in MICROHAPLOT were empiri-

cally derived. It is likely that a small number of additional genotypes

could be called (or a small number of genotypes could be called with

less error) by applying different filtering criteria. For example, our

approach would lead to an individual with 21 reads of haplotype A

and 18 reads of haplotype B being called as a homozygote of haplo-

type B. We note, however, that only 1.8% of genotype calls in our

experiments had sufficiently low read depth (homozygotes with <40

reads) to even have the chance of such an error. Although a better

approach that utilizes a probabilistic model to call haplotypes and

genotypes from the sequencing information could undoubtedly be

developed, it is beyond the scope of the present work.
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In ecological and conservation studies that require genotyping a

large number of samples, extracting more information per sequence

than the typically called bi-allelic SNPs is easily achieved with multi-

allelic microhaplotypes and will prove to be more efficient and cost-

effective. In addition, we analyse 96 samples here for convenience,

but in subsequent work have shown that we can reliably generate

genotypes for 384 fish at 96 of these microhaplotype loci in a single

such sequencing run of an Illumina MiSeq—a medium throughput

benchtop sequencer—achieving call rates above 99%, at a minimum

read depth of 20 for all individual/locus combinations (D. S.

Baetscher & J. C. Garza, unpublished data).

Markers with higher information content intuitively reduce the

amount of genotyping required for a set amount of inferential power

(Rosenberg, Li, Ward, & Pritchard, 2003). Moreover, it is particularly

important to minimize the number of genetic markers used in the

identification of close kin, because of the challenge of physical link-

age in some such analyses. Because recombination does not occur

between many loci that are on the same chromosome during any

single segregation event, such loci on the same chromosome do not

provide independent observations of relatedness for sibling relation-

ship categories. We show that the effect of physical linkage on rela-

tionship inference with a small number of markers is minimal, and it

is thus unlikely to greatly affect parent–offspring and full-sibling

identification. However, with the much larger number of markers

necessary for half-sibling analysis, linkage increases the false-positive

rate substantially and the discrepancy becomes greater as the num-

ber of markers increases, so that hundreds of additional SNP mark-

ers are necessary to account for this linkage and achieve FPR values

that might be necessary for studying natural populations. Further-

more, the reduced cost per individual of genotyping a panel with a

modest number (e.g., 96) of microhaplotype loci compared to meth-

ods that target larger proportions of the genome will allow enhanced

monitoring and evaluation of lower-profile species, benefiting man-

agement and conservation of many different animal and plant spe-

cies.
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